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On the solvability of the Painlevé VI equation
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Received 16 February 1995

Abstract. A rigorous method was intreduced by Fokas and Zhou for studying the Riemann—
Hilbert problem associated with the Painlevé II and IV equations. The same methodology has
been applied to the Painlevé I, [1l and V equations. In this paper, we will apply the same
methodology to the Painlevé VI equation. We will show that the Cauchy problem for the
Painlevé VI equation admits, in general, a global meromorphic solution in 7. Furthermore, the
special solution which can be written in terms of a hypergeometric function is obtained via
solving the special case of the Riemann—Hilbert problem.

1. Introduction

At the beginning of this century Painlevé [13, 19] and his school [9] classified the equations
of the form y” = F(¥', y, z}, where F is rational in y’, algebraic in ¥ and locally analytic
in z, which have the Painlevé property; i.e. their solutions are free from movable critical
points. Among fifty such equations, the six Painlevé equations are the most well known
nonlinear ODEs, since they are irreducible and do not have the solutions in terms of the
known functions. Besides the Painlevé property, these six Painlevé equations, PI-PVI,
have mathematical and physical significance. Their mathematical importance originates
from the following. (i) They can be considered as the isomoncdromic conditions for
suitable linear system of ODEs with rational coefficients possessing both regular and irregular
singular points {8, 10,2,14]. (ii) They can be obtained as the similarity reduction of
the nonlinear PDEs solvable by the inverse scatiering transform (IST) {1]. For example,
PI and PI can be obtained from the exact similarity reduction of the Korteweg—deVries
{KdV) equation. (iii) For a certain choice of parameters, PII-PVI admit a one-parameter
family of solutions which are either rational or can be expressed in terms of the classical
transcendental functions. For example, Pvi admits a one-parameter family of solutions in
terms of hypergeometric functions [16,3]. (iv) There are transformations associated with
PII-PVI, these transformations map the solutions of a given Painlevé equation to the solution
of the same equation but with different values of parameters {3,17,11,12]. (¥} FI-PV can
be obtained from PVI by the process of contraction [13]. In a similar way, it is possible to
obtain the associated transformations for PII-PIV from the transformation for pv. Moreover,
the initial-value problem of the Painlevé equations (PI-PV) can be studied using the inverse
monodromy transform (IMT) [4-7].

In this paper, we will apply the IMT method to PvY. This method is the extension of the
inverse spectral transform from PDEs to ODEs, and can be thought of as a nonlinear analogue
of Laplace’s method to find the solution of linear ODEs. First important developments for
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studying the initial-value problem of Painlevé equations have been introduced by Flashka
and Newell [2] and Jimbo et af [14]. They considered Painlevé equations as isomonodromic
conditions for linear systems having both regular and irregular singular points. Solving
such an initial-value problem is basically equivalent to solving an inverse problem for the
associated isomonodromic linear equation. The inverse problem can be formulated in terms
of the monodromy data which can be obtained from the initial data. In [2], this method
is applied on PII and the special case of PIll, and the inverse problem is formulated in
terms of a system of singular integral equations. In [14], the inverse problem is solved in
terms of a formal infinite series uniquely determined in terms of the certain monodromy data.
Ablowitz and Fokas [4] formulated the inverse problem for PIIin terms of a matrix, singular,
discontinuous Riemann—Hilbert (RH} boundary value problem defined on a complicated self-
intersecting contour. Fokas and Zhou [6] introduce a rigorous methodology for studying
the RH problem appearing in IMT, and they showed that the Cauchy problem for PIl and pv1,
in general, admit global solutions meromorphic in z. They also found the relation among
the monodromy data (and hence, among the initial data) for which the sclution is free from
poles. In [7], the above rigorous methodology is applied to P, PIil and pv.

The IMT method basically has the following two steps.

(1) Direct problem. The essence of the direct problem is to establish the analytic structure
of the eigenfunction ¥(z,t) of one of the two associated linear problems in variable z. In
the case of PvI, the linear ODE has regular singular points at z = 0, 1, ¢, co. Eigenfunctions
normalized in the neighbourhood of the regular singular points z = 0, 1, ¢ are related with
the eigenfunction in the neighbourhood of z = oo through the connection matrices. The set
which consists of the entries of the connection matrices is called the set of the monodromy
data. The crucial part of the direct problem is to show that only two of the monodromy data
are arbitrary. This can be shown by using the praduct condition around all singular points
(consistency condition) and certain equivalence relations. Hence, for given initial data for
PVI the two independent monodromy data can be obtained.

(ii) Inverse problem. By using the results cbtained from the direct problem a matrix RH
problem can be formulated over a certain contour. The jump matrices for the RH problem.
are defined in terms of the monodromy data. The RH problem is discontinuous at the points
of the discontinuities of the associated linear problem. These discontinuities can be avoided
by inserting circles around the singularities. Now, the new RH problem is continuous and
equivalent to the Fredholm integral equation. Once, the solution of the new RH problem is
obtained the solution of the original one can easily be obtained.

Since, the eigenfunction ¥ (z, t) is defined as the solution of the RH problem, once the
solution of the RH problem is obtained the associated linear ODE can be used to obtain the
solution of PvI. This procedure parametrizes the general solution of PVI in terms of the
relevant monodromy data and shows that the general solution is meromorphic in # modulo
the points t = 0, 1, oo which are its critical points. The generalized Cauchy data fort =0
were introduced in [15). In [15) an expression for the monodromy data in terms of the
mentioned generalized Cauchy data was obtained. A combination of this result with the
ones obtained in the present paper then provides the solution of the generalized Cauchy
problem for the PVI equation.

As mentioned before, for a certain choice of the parameters PVI admits rational solutions
as well as one-parameter families of solutions expressible in terms of a hypergeometric
function. For special choices of the monodromy data the RH problem can be solved in a
closed form. In the last section, as an example, we will show that for a particular choice
of the monedromy data, the solution written in terms of the hypergeometric function can
naturally be obtained by finding the closed-form solution of the RH problem. An exhaustive
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investigation of all such cases will be given elsewhere.
The sixth Painlevé equation

dZy_1(1+.;+_1__)(d_yz_(z+ 1 1\&
d2 " 2\y " y—1"y—t/\dt t -1 y—t/dt
L ¥y =Dy —1) t t—1 tt—-1)
M ("“L‘s y2+”(y—1>2+5<y—r)2) 0

can be obtained as the compatibility condition of the following linear system of
equations [14]

ay
i Az, HY(z, 1) 7 (1.2a)
% =B(z,)¥(z, 1) (1.2b)

where

, A A A (an(zt) apzt)
AR, 1) = z +z— 1 +z—t h ( an(z, 1) aplz,t)

(1.3)

o U; +9, — il , _ -1
&_(w*m+&)-ws) i=01r  B@O)=-A—.

Setting

Am=4M+m+Ag=(% i)

Kyt =~ +61+6;) iy — Ky = By
wolke Wiy Wiy k(EZz-—Y)
z z—1 z—t zz—D(z-1 1.4)
uo'%'eo L0 +6 + uy + 6
y y=1 " y-—1
& & 6,

g=—ap(Y)=4 —— — —— ~ .
y y—1 y-—t

az(z) = —

w=au(y)=

Then

uo + Uy U = K2 Wolto + Wiy + wei; =0

uo+90+u1+91 +u,+8,

=0 ; . .
wWo wr Wy (1 5)

(2 + Dwoug + twizg + welty =k twoug = k(t)y
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which are solved as
ky o = KO =D _ kG =1

g = ——

Tug YT e -0 T — D,
to = 2—{y(y ~ Dy = D+ [Bu(y = 1) + 16,0 = D = 2oy - DO = DF

+k3(y =t = 1) — k2 (6 + 1))}

-1
L =2 iy (y = Dy — D + [0 + O)(y ~ £) + 16,(y — 1) (1.6)
(¢ —1)fw
~2e2(y — 1)(y — 0] + 12 (y — 1) — k261 + 16;) — K163}
Tty — Dy — P2 T8 (v — _
Uy = = Do PO-DO -+ (-0 +16 +6)y—1)
~2i2(y — Dy — D]t + 22 (y — 1) — k281 + 16;) — tria}.
The equation ¥, = ¥:, implies
dy _yo -1 -1 (2u__@_ & _9:—1)
d @1 y y—1 y~—t
9_‘_{ _ 1 a2 .
iy 1){[ 3y2+ 200+ )y —t]u an

+2y =106+ Ry — )61 + 2y — 1)B; — Dlu ~ x1 (2 + 1}
1dk y—t
P i °°_1)t(t—1)'
Thus y satisfies the sixth Painlevé equation (1.1), with the parameters
@ =200 — 1) g=-162 y = 36f §=1(1-6%. (18

2. Direct problem

The essence of the direct problem is io establish the analytic structure of ¥ with respect
to z, in the entire complex z-plane. Since (1.24) is a linear ODE in z, therefore the analytic
structure is completely determined by its singular points. The equation (1.24) has regular
singular points at z =0, 1, ¢, co.

2.1, Solution about z = 0

It is well known that if the coefficient matrix of the linear ODE has an isolated singularity
at z = 0, then the solution in the neighbourhood of z = 0 can be obtained via a
convergent power series. In this particular case the solution ¥o(z) = (Yo (2), Yo (@),
for 83 # n, n € Z has the form

Yo(2) = Yo(2)2™ = Gof + Pz + P2+ -- 02 2 <1 @2.1)
where Fy(z) is holomorphic at z = 0 and,
0
0 ) 2.2)

_ 2k0 lowouo _ _ 90
GD_(Z% la(uo-l-eo)) detGg=1 Dg—( 0
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ko = ko e® Iy = lgeoo® Eo,_fo = constant
o = f [u,+e, w’“‘]df’ @3
“and ¥y satisfies the following equation:
o1 + [For, Dol = (Alco - %) .- (2.4

For simplicity in the notation the ¢ dependence is suppressed. Equation (2.3) follows from
that Yo(z) also satisfies (1.25) and det Yo(z) =1.If 8y=n, r € Z then the solution ¥,(2)
may or may not have the log z term.

The monodromy matrix about z = 0 is given as

Yo(z %) = Yy(z) 520, : 2.5

2.2. Solution about z = 1

The solution ¥i1(z) = (Yiay{2), Yiip{2)), of (1.2} in the neighbourhood of the regular
_ singular point z = 1 for 6; % n, » € Z has the form

1@ =h@eE- 10" =GiU 4+ Fuz = D+ Pui— D2 +-- )z —1)>
lz—1] <1 (2.6)

where ﬂ (z) is holomorphic at z =1 and

Zf]zl hiwyu 8 0
G = oL Ly + 61) detG; =1 Dy = ( 0 0 ) 2.7
wq
ky =k en® I = e~ ky, 1, = constant ,
Fl T Wik, ’ 2.8)

U]—f tf_ll:u;‘i‘e:— ” :|dt 7
and 11 satisfies the following equation:

N .\ dG

n+h. D=6 (ma—?%) _ 2.9)

Equation (2.8) follows from the fact that ¥i(z) also solves (1.25) and det I‘}l (2) =1 1If
&, =n, n € Z, the solution ¥1{z) may or may not contain the log(z — 1) term.
The monodromy matrix about z =1 is given as

Yi(zef™) = ¥\ (z) 27 (2.10)

2.3. Solution aboutz =t

The solution ¥, (z) = (Fr3(z), Yrz(2)), of (1.2} in the neighbourhood of the regular singular
point z =¢ for 8, # n, n € Z (if §; = n, n € Z the solution ¥;(z) may or may not have
the log(z — ) term) has the form

Y@ = Pi2)@ = 0% = Gy + Yz — ) + Yz — D +-- Yz — )P z—t <1
@.11)
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where F,(z) is holomorphic at z = ¢t and

_ Zk; l;w;u: . . 0: ]
G, = ( 25 1ty 4+6) ) detG, = 1 D, _( T o (2.12)
k; = E; ea'(‘) lr = Ze_b‘(r} E;, l:; = constant
T1 1 (2.13)
e/ =f —|uo-+6 — Tt ) + iy + 6~ DA ar
t wr F=1 Wy

and ¥;; satisfies the following equation:

. - 4 dG

Ya+[¥n, D] =G/ dt’ , (2.14)

Equation (2.13) follows from the fact that the solution Y;(z) also satisfy (1.2b) and
det¥;(z) = L
The monodromy matrix about z = ¢ is given as

Yi(ze¥™) = Y, (z) 570 (2.15)

2.4. Solution about z = c0

The solution ¥ (z) = (¥y{(2), ¥y (2)), of (1.2} in the neighbourhood of the regular singular
point z = oo for O £ 1, n € Z (if 6, = n, n € Z, the solution may or may not have the
log(2) term) has the form

. 1\ D= .1 . 1\ 1\P=
¥(2) = Tul@ (Z) =(1+Ym;+r@z(z) +)(z) ra o0 (216)

where ¥(z) is holomorphic at z = o0 and

Do = K1 0)
% (0 * @2.17)

Ka = o+ Uy -+ Uy Ky =Ky = Bcq Ky F Ky = — (8 + 6y --6)

and Y., satisfies the following equation:

Foot 4 [Foo1, Dooi = — (A1 +1As). (2.18)
The monodromy matrix 2%+t z = oo is given as
Y(zeP™) = ¥(z) e 8 0= (2.19)

We associate the branch cuts from 0 to 1 and from 1 to ¢ with zP and (z — )™
respectively, while the branch cut from ¢ to oo with (z — )2 and (1/z)P= as indicated in

figure 1.

2.5. Monodromy data

The relations between the ¥(2) and Y;(z), { =0, 1, ¢ are given by the connection matrices
E; ’

&on
Since, ¥Y(z) and ¥;(z), i =0, 1, ¢ satisfy (1.2a), they are related with constant matrices E;
with respect to z and det E; = 1 condition follows from the normalization of ¥;(z) to have
unit determinant.

Y () = Yi(2)E; E; =( Hi Y ) det E; = 1 i=0,1,z. (2.20)
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Figure 1.

The monodromy data MD = {0, Vo, £o. Mo, 1. V1, &1 10 ey Ve, &, 1) satisfy the
following consistency condition:

(& eMD,Er)(EI—I o2 D: El)(Eg_l HTDV gy = o2t Da @2.21)
in particular,
cos (0 — &1 X (Sotton1 vt + Novort151 — Mokovid1 — Jovoni i)
+cos (& + A1) (vodov141 -+ Moftom s — Holovint — Novopidl)
= (U, COS (B +6;) — v & cosm (B — 8,). (2.22)
It is possible to show that only two of the monodromy data (two entries of the connection
matrix Ep) are arbitrary and all the others can be determined in terms of these two. If we
let [7] '
Eq (E(;] 27D E GmD‘El_l — ( _%(xz f 1) e i N ) e~ @+0:) (2.23)
then the consistency condition (2.21) gives )

—1 i - . x T s
El(Et le ZHTD‘E;)E] 1 = GZIJTDI ( _l(xz —ex + 1) c—x ) e (e +6: ) . (2.24)
T

The trace of (2.23) gnd (2.24) imply
2cosml, = ce” ™ 4 2ixsinmo, .
(2.25)

Thus, x and ¢ can be determined in terms of the entries of the connection mattix E,,
if 6, £ n, n € Z. T is the only free parameter in (2.23), which reflects the freedom in
choosing the connection matrix Ei, i.e. E; can be determined within the left multiplicative
diagonal matrix diag (di, d; 1), where d; is non-zero arbitrary complex constant. If we
replace E, by diag (d;, 4] YE; in (2.23), this changes T to 'r/a!lz. But, this transformation
in E; leaves the consistency condition (2.21) invariant. Also the consistency condition
(2.21) remains the same if E; is replaced by diag(d,, d;l)E,, where d; is an arbitrary non-
zero complex constant. Hence, equation (2.24) determines E; within the left multiplicative
diagonal matrix diag(d;,d;"). On the other hand, if we replace ¥ with ¥ = R™'¥R in
(1.2) where R = diag(r'/?, 7~'/?) and r is non-zero arbitrary complex constant, equation
(1.2) for ¥ is the same as for ¥, with the only change replacing w; with w;/r, i =0,1,¢.
The solution ¥(t) of PVI does not change under this transformation (see the last equation
of (1.5)). But, the connection matrix Ey for ¥ is obtained by replacing vp and Zo with

N o

Loto €08 7 (B + Boo) — vodo COST (B — o) =
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vo/r and Lyr, respectively. Thus, r may be chosen to eliminate one of the entries of Ej,
e.g. r = 1p. Also, changing the arbitrary integration constants in op(t) (see equation {2.3))
amounts to multiplying Yo1,(z) and Yy (z) by arbitrary non-zero complex constants dy and
dy 1 respectively. This maps Eq to diag (do, dy NE,. Thus, dy may be chosen to eliminate
one of the entries of the connection matrix Ey.

The freedom in choosing E;, i =0, 1, ¢ does not effect the solution of the RE-problem.
Equation (2.20z) and the above transformations (E; — diag (d;, 4;” I)E,-, i =0,1,t) change
¥; to Yidiag (d;, 4;1), i.e. the transformations have the effect of transforming ; to k;d; and
I; to l;/d;, i =0, 1, ¢, which leaves k;l; = 1/28; (det G; = 1) invariant,

By using the similar proofs given in [2,7] it is possible to prove that, if ¥ evolves in ¢
according to (1.25), then the monodromy data are independent of z.

3. The inverse problem

In this section, we will formulate a continuous, regular RH problem over the self-intersecting
contour for the function called ®(z). In order to have a regular RH problem, we let
086 <1, i=011c0 The general case can be obtained by using the Schlesinger
transformations for PVI [18]. Since, ?,-(z), i =0,1,¢tand ¥ (z) are holomorphic at
z = 0,1,t, c0, respectively, we first consider the contour indicated in figure 2 instead
of figure 1 to formulate the continuous RH problem. The circles about z = 0,1, ¢ have
radius r < % and are denoted by Cy, C; and C;, respectively.

The jumps across Cg, CD, E}? are given by the connection matrices Eyp, E; and E,,
respectively. All the other jumps across the rest of the contour can be derived from
the definition of the connection matrices and the monodromy matrices. To drive jump
across BC, we use the definition of the connection matrix Eg and (2.5):

Y (z) = Yo(z) Eg
= Yoz ™ ) e
= Y(ze"E; e WP, (3.1)
The jump across €D, can be obtained from (3.1) and the definition of the connection
matrix E;

Y(2) = Y1z ¥ ) Ey (B3 2720 Ep) (3.2)
since, ¥;(z) is holomorphic at z = 0, jump across the CD is given as
Y(z) = N(2)E1(Ey’ 2P Ey) . (3.3)

Figure 2.
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The jump across DE:
Y(z— 1D =N{z— 1) E;
=Yz - 1|e*) "2
= Y{lz — 1| ¥ )(Ey' e B P EQ) (BT D EY) . (3.4
In a similar way the jumps across the contours EF and Foo can be derived. Hence, the
jumps across the contours of figure 2 are given by
Co: Y@)=Y(2)Eo

C:Y@)=Y(z ez-”')EJ1 e~ 2D gy

~—

b Y(2) = Yi(2)E;
CD:Y(2) =YiRE E; " E,y

BE i i o1 3.5
DE :Y(IZ -_ ll) = Y(lz — I[QZLT)(EEI e—-Zm’DoEO)(El—I e—Zm’Dl ED ( )
E"-E‘-": Y(Z) =Y (2)E,

EF :Y(lz — 1)) = Yz — e e "> E, om0

Foo :Y(z) = Y(ze®™) 7P
In order to define the continuous RH problem, we define sectionally analytic function ®(z, 1)
as follows:

1\ 2=
Yiz) = ¢(z)(z) Yo(2) = ®o(z)z™

1) = &1 @) —DP Y(2) = &, (2)z — )™
The orientation used in figure 3 atlows the splitting of the complex z-plane in + and —
regions. Then, ®*, ®;, { = 0,1,¢ are the Tepresentations of the sectionally analytic
function ®(z) in the regions indicated in figure 3. Equation (3.5) implies certain jumps for
&(z) and we obtain the following R problem:

(3.6)

. o . 1
&HE) = OT(OVE) on C S =T+ O(E) a5 Z->00 3.7
where C = 60A + Co + BC + C; + DE + C; + Eco and the jump matrices are given by

1 —Dey
— — - -
Vo =1 - VAAB =z Eo(z)

Figure 3.
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Vig = (l)Dw EFlz Vo = (i)pw Ete 2D g, (1) e
AB z 0 BC z 0 z

1\ %=
Vo =(z—1>DIE1(—) vcu-—-(l) Eyte ™R EoEr (z - )7 (3.8)
cD zZ bt Z

1 D= 1 ~2imr Dy 1 2im Dy 1 D D, 1 =D
Ver=| ~ Ey e RENE e TEN - Ve =(z—8)"E [ -
DE (Z) ( a € 0)( 1 © !)(Z) EF (z ) t(z)

1 Do . 1 Do 1 —Do
V{:f = (.z..) eZm'Dm E;-l e—Zm'Dr (Z _ t)-D‘ VF:; - (E) eZm'Dm (_) i

+ Z

The subscript + in V-pg denotes that we consider the boundary value from the + region,
ie. (24 = |z]e®

By construcmm ®(z) satisfies the continuous RH problem and this can be checked by
the product of the jump matrices V' at the intersection points. The product conditions give

Ar VeVyp=1 B: [V@hV‘ag[v;gf]-I =TI
C: Vgl 'WVepV =1 D: [VeplsVg Vgl ™ =1 (3.9)

E: [Vﬁ]-lvgvﬁ =1 F: [V-f;]"l[V@]_l_Vﬁ =].

The product conditions at the intersection poimts A, B, C, D and F are satisfied identically
and the product condition at point E is satisfied because of the consistency condition (2.21)
of the monodromy data. In equation (3.95), [VAB]+ indicates that z texm in Vag must be
evaluated as (z)+. in equation (3.94), [VC pl+ indicates that (z — 1) term must be evaluated
as (z— 1), and in equation (3.97), () and (z ~#) terms in Vgr must be evaluated as (1) +
and (z — 1), respectively.
The RH problem (3.7) is equivalent to following Fredholm integral equation
1 P=HIVEV ) -1

P @)=1 + dz. 3.10)
c i—z

3.1. Dertvation of the linear problem

In this section, we will show that if the sectionally analytic function ®(z) satisfying the RH
problem (3.7) is known, then the coefficients A and B of the Lax pair can be determined
and hence the solution of PVL

We define A by A(z) = af__' Y~1(z). Since & ¥l Y and Y(z) admit the same jumps it follows
that A(z) is holomorphic in C/({0}+ f1}--{r}) and has the removable smgulanty at z = oo.
Furthermore, ¥ (z) ~ (1/2)P* as z — 00, and thus A(z) = Ao + A P e A,z Recall
that, ¥ (z) and ®(z) are related via (3.6), therefore (3.6) and = A(z)Y(z) give

1 1
a—cp-—tp[)oo— = I:Ao—+AI—+A, ]CID near z = oo
oz z 1 z-—t
ad 1 1 1
—+¢Dg—-~ |:Ao—+A1m———~+A, L near z=0
a9z z z—1 z—t

(3.11)
1 1 1

ﬁ+<I>D;—1—~= Ag— +A1—+A, ](D near z=1
0z z—1 z —1

ad 1 1 1 :
**-'“‘“E‘(DD;—I—: Ao— +A1—+A, ]q) near z==¢.
dz z—t b4 [| —~t
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For large z, $(z} has the expansion

() =1+¢_I%+<D-zz—12+o(§3-) as z—» oo (.12)
Substituting (3.12) into (3.11a) yields

1 1

O(E‘) : Ag+ A1+ A =-D, O(Z—z) —®_; + Doy, Pyl =A; +1A;.

(3.13)
Since, the function ®(z) is sectionally analytic and ¥(z) = ®;(z), i = 0,1,¢ about
z =0, 1,1, respectively, then (3.115)~(d) imply
Ap= <IJ0(0)DOCI>51(0) A= <I>1(1)D1<I>]'1(1) A= ¢,(I}D,Q>,_1(r) (3.14)
respectively. Thus, .
detA; =0 trace A; = 6; i=0,1.z. (3.15)

The equations (3.13) and (3.15) imply that A;, { = 0, 1, ¢ can be taken in the form appearing
in (1.36), then (3.135) gives

(@ 2l — B) = mywy + tuyw, = —k(2). (3.16)

Hence, the solution y{(#) of PVI can be written in terms of (P_yha.
Similarly consideration implies that B is holomorphic in C/{t} and has removable
singularity at z =.00. Thus B(z) = Bo-. Using & = BY and (3.6) it follows that
ad 1
i By near z =Co .
s 1 . B.17)
—é?—z_tq)D,—-Bo—q) near z==¢.

These equations imply

—3; =By ° By=—-0,(t)D:0 (1) (3.18)

respectively. Equations (3.185) imply that By can be taken as By = —A;. Equation (3.18a)
with (P_;)y2 is consistent with the compatibility condition of (1.25).

4. Closed-form solution

For certain choice of the parameters, PVI admit one parameter family of solutions which
are éxpressible in terms of hypergeometric function [16,3]. In this section, we will show
that, for certain choice of the monodromy data such solution can naturally be obtained by
finding the closed-form solution of the RH problem (3.7).

Let vop = &g = ¢; = 0, then the consistency condition (2.21) implies that & =
0, G4+ +6+x1=p, and k2 = g, p,g € Z. Without loss of generality, we let
Eo=1I and 3 =m =, =5, =1, p =g = 0. Then the matrix valued R¥ problem
can be reduced to set of scaler RH problems. If &(z) = (Py(2), Pey(2)), then

&, (@) = o5, @) ®HE) — Py (@) = R@PE,E) on C (4.1)

where the jump functions g(Z) and /£(Z) can be obtained from (3.8) for this particular
choice. The RH problem for ®(;y(z) can easily be solved by introducing new sectionally
analytic function W(z) such that ®q)(z) = ()%= (z — D%z — )%, Popy(2) =
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Yo(z)(z ~ Pz = )%, Biiy(e) = Vi@P(z ~ D%, Ouy(e) = Y(@)z%(z — )P, Then,
W(z) satisfies the following RH problem:

W (Z) = U (3) on C ¥ (z) — ( (1) ) as 7 -— 00 4.2)
i.e. W(z) and W (z) are analytic continuation of each other, Thus,
Day(z) = ( (1} )z"“""“ (z— DAz —o) Boy(2) = ( é ) (z— 1Pz — 1)
i ' 1 4.3)
Py (z) = ( 0 ) 0(z - 1) O,1)(z) = ( 0 ) oz — 1.

Hence, the RH problem for ®(2):
P53 — D5, (B) =k (@) on Cg=C +DE+C,

4.4
CP@)(z)—)»(?) as z— co 4

where Cg is indicated in figure 4, and the jump functions &(z) are

ke = "kep = ( é ) vir(z) pE = ( é )var(z)(l — &%)

1 4.5)
k.E.f'TF = —!C%F eﬁzel —_ ( 0 ) U:?‘(z) r(z) — Zﬁu(z _ 1)9' (Z _ t)er .
By Plemelj’s formula the solution of the RH problem for &®(z) is given as
+ e O 1 f k@) .
Poy{z) = ( N Bz dz. 4.6)

Evaluating the integrals over the contours C) and C, and using the consistency condition
of the monodromy data, ®3;(z) is obtained as follows:

q’?i)(z)=((l))+—2il—x( (1) )F(z,r)

v ; fr(g) @D
Fla,t)= o—(1 - | == g5
2im 1 Z—2
where r(z) is given in (4.5). Combining {4.3q) with (4.7) and using (3.6a) yield
8ofe — 1Nz — 1Y
Y@= ( - Dm0t Fen ) : @)
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Expanding F(z,t) for large z the coefficient f(t) of the O(1) term gives (see
equation (1.5d))

k(f) = (6o — 1) (2} (4.9)
and expanding F(z,t) in powers of z the coefficient fy(z) of O(1) term gives
upwo = 6o fo(t) . 4.10)
Hence, the solution y(t) (1.5¢) of PVl is
QfoO(f)
— 4.1
YO = = Df® @b

where

!
70 =~ (1 -2 [ G - 1@ - 0 o2
o o (4.12)
7oe) = g1 = 70 [ 27— 1% - 2.
T I

The functions f(¢) and f3(z) can be put into the form of the integral representation of the
hypergeometric function and its derivative with respect to its argument [20]. Therefore, for
B+ 6 + 6, + 6 = 0 and for Re[fp] < 1, Re[#] > —1, Re[f;] > —1 the solution of the
PVI equation can be expressible rationally in terms of the hypergeometric function.

References

[1] Ablowitz M J, Ramani A and Segur H 1978 Letr. Nuovo Cimento 33 333; 1980 J. Marh. Phys. 21 715
[2] Flaschka H and Newell A C 1980 Commun. Math. Phys. 76 67
[3] Fokas A S and Ablowitz M J 1982 J. Math. Phys. 23 2033
{4] Fokas A S and Ablowitz M J 1983 Commun. Math. Phys. 19 381
{5] Fokas A S, Mugan U and Ablowitz M J 1988 Physica 30D 247
[6] Fokas A S and Zhou X 1992 Commun. Math. Pyhs. 144 601
[7] Fokas A S, Mugan U and Zhou X 1992 Inverse Problems 8 757
[8] Fuchs R1907 Math. Ann. 63 301
[9] Gambier B 1909 Acta. Math. 33 1
[10] Garnier R 1912 Ann. Sci. Ec. Norm. Super, 29 1
[11] Gromak V ¥ 1975 Diff. Urav. 11 373
[12] Gromak V I 1967 Diff. Urav. 12 740
[13] Ince E L 1927 Ordinary Differential Equations (New York: Dover 1956)
[14] Jimbo M and Miwa T 1981 Physica 2D 407, 1981 Phys;ca 4D 47
Ueno K 1980 Proc. Japan. Acad. A 56 97
Jimbo M, Miwa T and Ueno K 1981 Physica 2D 306
Jimbo M 1979 Preg. Theor. Phys. 61 339
[15] Jimbo M 1982 RIMS. Kyoto Univ. 18 1137
[16] Lukashevich N A and Yablonskii A 1 1967 Diff. Urav. 3 246
[17] Lukashevich N A 1971 Diff Urav. 7 1124
[18] MuBan U and Sakka A 1995 Shlesinger transformations of Painlevé V1 equation J. Math. Phys. to appear
[19] Painlevé P 1900 Bull. Soc. Marh. Fr. 28 214; 1912 Acta. Math. 25 1
[20] Whittaker E T and Watson G N 1902 A Course of Modern Analysis (New York: MacMillan)



