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On the solvability of the Painlev6 VI equation 
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Department of Mathematics, Bilkent University, 06533 Baent ,  Ankara, Turkey 

Received 16 February IS95 

Abstract. A rigorous method was introduced by Fokas and zhou for studying the Riemann- 
Hilbea problem associated with the Painlev6 I1 and IV equations. The same methodology has 
k e n  applied to the Painlev6 I, U1 and V equations. In this paper, we will apply the same 
methodology to the Painlev6 VI equation. We will show that the Cauchy problem for the 
Painlevd VI equation admits, in general, a global meromorphic solution in t .  Furthermore, the 
special solution which can be written in t m s  of a hypergeometric function is obtained via 
solving the special case of rhe RiemanwHjlbert problem. 

1. Introduction 

At the beginning of this century Painlev6 [13,19] and his school [9] classified the equations 
of the form y" = F(y ' ,  y,z), where F is rational in y', algebraic in y and locally analytic 
in z, which have the Painlev6 property; i.e. their solutions are free from movable critical 
points. Among fifty such equations, the six Painlev6 equations are the most well known 
nonlinear ODES, since they are irreducible and do not have the solutions in terms of the 
known functions. Besides the Painlev6 property, these six Painlev6 equations, PI-PVI, 
have mathematical and physical significance. "heir mathematical importance originates 
from the following. (i) They can be considered as the isomonodromic conditions for 
suitable linear system of ODEs with rational coefficients possessing both regular and irregular 
singular points [S, lo,.?, 141. (ii) They can be obtained as the similarity reduction of 
the nonlinear PDEs solvable by the inverse scattering transform (IST) [l]. For example, 
PI and PIX can be obtained from the exact similarity reduction of the Korteweg-deVries 
(KdV) equation. (iii) For a certain choice of parameters, PII-PVI admit a one-parameter 
family of solutions which are either rational or can be expressed in terms of the classical 
transcendental functions. For example, P v i  admits a oneparameter family of solutions in 
terms of hypergeometric functions [16,3]. (iv) There are transformations associated with 
PII-PVI, these transformations map the solutions of a given Painlev6 equation to the solution 
of the same equation but with different values of parameters [3,17,11,12]. (v) PI-PV can 
be obtained from PVI by the process of contraction [13]. In a similar way, it is possible to 
obtain the associated transformations for PII-PIV from the transformation for Pv. Moreover, 
the initial-value problem of the Painlev6 equations (PI-PV) can be studied using the inverse 
monodromy transform (IMT) [4-71. 

In this paper, we will apply the IMT method to PVI. This method is the extension of the 
inverse spectral transform from PDEs to ODES, and can be thought of as a nonlinear analogue 
of Laplace's method to find the solution of linear ODES. First important developments for 
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studying the initial-value problem of Painlev6 equations have been introduced by Flashka 
and Newell [Z] and J i b 0  etul [14]. They considered Painlev6 equations as isomonodromic 
conditions for linear systems having both regular and irregular singular points. Solving 
such an initial-value problem is basically equivalent to solving an inverse problem for the 
associated isomonodromic linear equation. The inverse problem can be formulated in terms 
of the monodromy data which can be obtained from the initial data In 121, this method 
is applied on PI1 and the special case of PIII, and the inverse problem is formulated in 
terms of a system of singular integral equations. In [14], the inverse problem is solved in 
terms of a formal infinite series uniquely determined in terms of the certain monodromy data 
Ablowitz and Fokas [4] formulated the inverse problem for PII in terms of  a matrix, singular, 
discontinuous Riemann-Hilbert (RH) boundary value problem defined on a complicated self- 
intersecting contour. Fokas and Zhou [6] introduce a rigorous methodology for studying 
the RH problem appearing in W, and they showed that the Cauchy problem for PI1 and PVI, 
in general, admit global solutions meromorphic in  i. They also found the relation among 
the monodromy data (and hence, among the initial data) for which the solution is free from 
poles. In [7], the above rigorous methodology is applied to PI, PI11 and W.  

U Mufan and A S u k  

The UIT method basically has the following two steps. 
(i) Directproblem. The essence of the direct problem is to establish the analytic structure 

of the eigenfunction Y ( z ,  t) of one of the two associated linear problems in variable z.  In 
the case of PVI, the linear ODE has regular singular points at z 7 0, 1, I, CO. Eigenfunctions 
normalized in the neighbourhood of the regular singular points z = 0, 1, t are related with 
the eigenfunction in the neighbourhood of z = 00 through the connectim matrices. The set 
which consists of the enhies of the connection matrices is called the set of the monodromy 
data. The crucial part of the direct problem is to show that only two of the monodromy, data 
are arbitrary. This can be shown by using the product condition around all singular points 
(consistency condition) and certain equivalence relations. Hence, for given initial data for 
PVI the two independent monodromy data can be obtained. 

(ii) Inverse pmblem. By using the results obtained from the direct problem a matrix RH 
problem can be formulated over a certain contour. The jump matrices for the RH problem 
are defined in terms of the monodromy data. The RH problem is discontinuous at the points 
of the discontinuities of the associated linear problem. These discontinuities can be avoided 
by inserting circles around the singularities. Now, the new RH problem is continuous and 
equivalent to the Fredholm integral equation. Once, the solution of the new RH problem is 
obtained the solution of the original one can easily be obtained. 

Since, the eigenfunction Y(z ,  t) is defined as the solution of the RH problem, once the 
solution of the RH problem is obtained the associated linear ODE can be used to obtain the 
solution of PVI. This procedure paramehim the general solution of PVI in terms of the 
relevant monodromy data and shows that the general solution is meromorphic in t modulo 
the points r = 0, 1,oo which are its critical points. The generalized Cauchy data f o r i  = 0 
were introduced in [15]. In [15] an expression for the monodromy data in terms of the 
mentioned generalized Cauchy data was obtained. A combination of this result with the 
ones obtained in the present paper then provides the solution of the generalized Cauchy 
problem for the WI equation. 

As mentioned before, for a certain choice of the parameters PVI admits rational solutions 
as well as one-parameter families of solutions expressible in terms of a hypergeometric 
function. For special choices of the monodromy data the RH problem can be solved in a 
closed form. In the last section, as an example, we will show that for a particular choice 
of the monodromy data, the solution written in terms of the hypergeomehic function can 
naturally be obtained by finding the closed-form solution of the RH problem. An exhaustive 
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investigation of all such cases will be given elsewhere. 
The sixth Painlev6 equation 

4111 

can be obtained as the compatibility condition of the following linear system of 
equations [ 141 

where 

Setting 

Am = -(A0 + Ai + A t )  = 

KI +K2 = -(eo +e1 +e,) K~ - Kz = e, 
WOUO WlUl wrur k(z - Y) a l z ( z )  = -- - - - - = 

z z - 1  z - t  z ( z - l ) ( z - - f )  
uo+oo U ]  +ol u t+e r  

U =all(y)  = - + - +- 
Y y - 1  y - r  

- eo el er 
22(y) = U - U = -a - - 

y - 1  y--f 

Then 

uo+o0 u1 +e, ur +er -+- +-=O 
WO W1 W* 

(1.4) 
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which are solved as 

WO = - k b  - t )  kY 
f U 0  uI(r - 1) t ( f  - I)ur 

Wf = k ( y  - 1) w1 = - 

{ [-3yZ + X I +  t ) y  - t ] u 2  
du 1 
dt f(r-1) 
_=- 

(1.7) 

ldk Y - - t  -- = dt  (@CO- 1)- t( t  - 1) 
Thus y satisfies the sixth Painlev6 equation (l.l), with the parameters 

Iy = ?(em I - 1)Z p = -'e2 y = LgZ z 1  s=;(l-e:). (1.8) 2 0  

2. Direct problem 

The essence of the direct problem is to establish the analytic structure of Y with respect 
to z, in the entire complex z-plane. Since (I.%) is a linear ODE in z, therefore the analytic 
structure is completely determined by its singular points. The equation (I.&) has regular 
singular points at z = 0, 1, t,  CO. 

2.1. Solution about z = 0 

It is well known that if the coefficient matrix of the linear ODE has an isolated singularity 
at z = 0, then the solution in the neighbourhood of z = 0 can be obtained via a 
convergent power series. In thii particular case the solution Yo(z) = (Yo(~)(z), Yo(z)(z)), 
for 00 # n, n e Z has the form 

(2.1) Yo(z) = fo(z)zD0 = Go(l + POIZ + b z Z  + ...)zD0 IzI < 1 

where P&) is holomorphic at z = 0 and, 



On the solvabiliry of the Painlevd VI equation 4113 
- -  

ko = koe - no(') lo = TO ko, lo = constant 

and f01 satisfies the following equation: 

fo1 + [f01,0,3] = -GF1 AlGo - - . . (2.4) ( dGo) dr 
For simplicity in the notation the t dependence is suppressed. Equation (2.3) follows from 
that Yo(z) also satisfies (1.26) and det = 1. If eo'= n ,  n E Z then the solution Yo(z) 
may or may not have the logz term. 

The monodromy matrix about z = 0 is given as 

YO(Z e&) = YO(Z) eZnDo . (2.5) 

2.2. .Glution about z = I 

The solution YI(z) = (Y1cl,(z), Yl(Z)(z)), of (1.2) in the neighbourhood of the regular 
singular point z = 1 for 81 # n,  n E Z has the form 

&(z) = fi(z)(z - l)D' = Gi(I + ?II(Z - 1) + ~ I Z ( Z  - 1)'+ ..:)(z - l)D1 
lz -11<1 (2.6) 

where fl(z) is holomorphic at z = 1 and 

- -  . 
kl = kl - e lI  = il kl, lI = constant 

and f11 satisfies the following equation: 

+ [fli, Di] = Grl AoGi - - ( d:l) (2.9) 

Equation (2.8) follows from the fact that Yl(z) also solves (1.26) and detfl(z) = 1. If 
el = n,  n E Z, the solution Yl(z) may or may not contain the log(z - 1) term. 

The monodromy matrix about z = 1 is given as 

~1 (z e'") = ~1 (z) e&Dl . (2.10) 

2.3. Solution about z = t 

The solution Y,(z) = (Yr(l)(z). YrCz,(z)), of (1.2) in the neighbourhood of the regular singular 
point z = r for 0, # n,  n E Z (if 0, = n, n E Z the solution Yr(z) may or may not have 
the log(z - t )  term) has the form 

~ , ( z i  = f,(z)(z - t p  = G,(I + y,,(z - t )  + I z ( z  - t)Z + .. .)(z - tID1 Iz-rl 4 1 
(2.1 1) 
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where ft(z) is holomorphic at z = t and 

U Mugm and A Sakka 

and Pfl satisfies the following equation: 
IdGt 

t i  + [?ti, Dtl = G; 7. 

(2.12) 

(2.13) 

(2.14) 

Equation (2.13) follows from the fact that the solution Y,(z) also satisfy (1.B) and 
detYt(z) = 1. 

The monodromy matrix about z = t is given as 
Y,(Z e'") = yt(z) e'"Q . (2.15) 

2.4. Solution about z = CO 

The solution Y(z) = (Y(l)(z), Y,(z)), of (1.2) in the neighbourhood of the regular singular 
point z = 03 for 6, # n, n E Z (if 8, = n, n E Z, the solution may or may not have the 
log(!) term) has the form 

Y (z) = Pm(z) (t) Dm = (I 3. 4- Pm2 (:)' + . . .) (1)"" z -+ 03 (2.16) 
Z 

where ?(z) is holomorphic at z = 03 and 

Dm=( K1 0 K2 O )  

Kz = Ug f U ,  +Ut K1 - Kz = 6, 

and fml satisfies the following equation: 

fmi +[Pmi, 0,; = -(Ai t A t ) .  (2.18) 

Y(Z e'") = Y(Z) e-znD- . 
The monodromy matrix &~zf^.>t z = 00 is given as 

(2.19) 
We associate the branch cuts from 0 to 1 and from 1 to t with zDo and (z - 

respectively, while the branch cut from t to CO with (z - t)" and ( I / z )~"  as indicated in 
figure 1. 

2.5. Monodromy data 

The relations between the Y(z) and K(z). i = 0, 1, t are given by the connection matrices 
E; 7 

Y(z) = yi(z)E; Ei = ( pi ) detEi = 1 i = O , l , t .  (2.20) 5; vi 

Since, Y(z )  and (z), i = 0,1, t satisfy (1.2a), they are related with constant matrices Et 
with respect to z and det E1 = 1 condition follows from the normalization of Y;(z) to have 
unit determinant. 
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r = O ,  z =  I 

I 

Figure 1. 

The monodromy data MD = ~ ~ ~ o . ~ o , t o , t l o , ~ ~ i , ~ ~ , t ~ , t l i , ~ ~ r , ~ ~ r , t , t ~ t }  satisfy the 

(2.21) 

following consistency condition: 

( ~ ~ - 1  e 2 k D , ~ f ) ( ~ ; 1  eZiZD!~l)(~;l eZiZDo~o) = e-2kD= 

in particular, 

cosa(eo - el)(iopotllvl + ~ J ~ v ~ L L ~ ~ ~  - ~ J ~ M V ~ ~ ~  - s o ~ o t l l ~ l )  

t cosa(eo + e l ) ( ~ o c o ~ l ~ l  + ~ J O L L ~ ~ ~ L L ~  - L L ~ ~ ~ v ~ s ~  - t l o v o ~ l t l )  
=pltllcosn(e,+e,)-u,&wss(e,-e,). (2.22) 

It is possible to show that only two of the monodromy data (two entries of the connection 
matrix EO) are arbitrary and all the others can be determined in terms of these two. If we 
let 171 

then the consistency condition (2.21) gives 

The trace of (2.23) and (2.24) imply 

p o t J o ~ ~ ~ ~ ( e o + e , ) -  vo~0cosn(~o-6,) = - 2 
C 

2cosner = ce-i"* +2 ixs inse l .  

(2.25) 
Thus, x and c can be determined in terms of the entries of the connection matrix EO, 
if 81 # n, n E Z. r is the only free parameter in (2.23);which reflects the freedom in 
choosing the connection matrix El,  i.e. E1 can be determined within the left multiplicative 
diagonal matrix diag(d1,d;'). where d1 is non-zero arbitrary complex constant. If we 
replace El by diag (4, d;')El in (2.23). this changes r to s/d:. But, this transformation 
in E1 leaves the consistency condition (2.21) invariant. Also the consistency condition 
(2.21) remains the same if Er is replaced by diag(d,, d;l)E,, where dr is an arbitrary non- 
zero complex constant. Hence, equation (2.24) deternunes Er within the left multiplicative 
diagonal matrix diag(d,,d;l). On the other hand, if we replace Y with p = R-IYR in 
(1.2) where R = diag(rl/z,r-l/*) and r is non-zero arbitrary complex constant, equation 
(1.2) for t is the same as for Y ,  with the only change replacing wi with wi/r, i = 0,1, t .  
The solution y(t) of PVI does not change under this transformation (see the last equation 
of (1.5)). But, the connection matrix 20 for f is obtained by replacing IJO and 50 with 
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vojr and for, respectively. Thus, r may be chosen to e l i n a t e  one of the entries of EO, 
e.g. r = UO. Also, changing the arbitrary integration constants in no(!) (see equation (2.3)) 
amounts to multiplying Yo(l,(z) and Y o o ( z )  by arbitrary non-zero complex constants d, and 
d;' respectively. This maps EO to diag (& &')EO. Thus, 4 may be chosen to eliminate 
one of the entries of the connection matrix EO. 

The freedom in choosing E;, i = 0,1, t does not effect the solution of the RH-problem. 
Equation (2.2Oa) and the above transformations (E; + diag (d;, dt:')E;. i = 0, 1, t )  change 
Y; to fidiag (di, d;'), i.e. the transformations have the effect of transforming k; to kidi and 
1; to l; /d;,  i = 0,  1, t ,  which leaves k;li = 1/26; (detG; = 1) invariant. 

By using the similar proofs given in [2,7] it is possible to prove that, if Y evolves in f 
according to (1.2b), then the monodromy data are independent o f t .  

3. The inverse problem 

In this section, we will formulate a continuous, regular RH problem over the self-intersecting 
contour for the function called @(z). In order to have a regular RH problem, we let 
0 < 0; <' 1, i = 0, 1, t ,  W. The general case can be obtained by using the Schlesinger 
transformations for PVI [IS]. Since, ?;(z), i = 0,l.t  and P(z) are holomorphic at 
z = 0, 1, t ,  00, respectively, we first consider the contour indicated in figure 2 instead 
of figure 1 to formulate the continuous RH problem. The circles about z = 0.1, t have 
radius r < 4 and are denoted by CO, CI and C,, respectively. 

The jumps across CO, CD, EF are given by the connection matrices Eo, El and E,, 
respectively. All the other jumps across the rest of the contour can be derived from 
the definition of the connection matrices and the monodromy matrices. To drive jump 
across E, we use the definition of the connection mauix EO and (2.5): 

U Mugan and A Sakka 

h -  

Y ( z )  = Yo(z)Eo 
= Y ~ ( Z  e'") e-&"& 

~ ( 2  e'")Erl e-""DoEo. (3.1) 
The jump across C,D, can be obtained from (3.1) and the definition of the connection 
matrix El: 

Y(Z) = ' Y ~ ( Z ~ ~ ~ ) E ~ ( E ; '  ez'"DoEo) (3.2) 
since, Y, ( z )  is holomorphic at z = 0, jump across the CUD is given as 

Y(z) = Yl(z)El(E;' ez'"DoEo). (3.3) 

I 
Figure 2. 
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~~ 

The jump across DE: 
Y(/z - 11) = YI(Iz - 1l)E1 

= ~ l ( [ z  - 1le*'")e- '~~1~1 
= y(lZ - 11e'""~;'e-Z''' OE~)(E; '  e-'nD'El). (3.4) 

In a similar way the jumps across the contours E,F and F c o  can be derived. Hence, the 
jumps across the contours of figure 2 are given by 

CO : Y ( z )  = Y (z)Eo 
BC : Y ( Z )  = Y(ze2")E;' e-2'nDoEo 

- 

- 

(3.5) 

FD: Y(z) = Yl(z)El 

CJ : Y ( Z )  =~Y~(Z)E~E;' ezinDoE0 
- 
D E  : ~ ( l z  - 1 1 )  = Y ( ~ Z  - I [ ~ ~ ~ ) ( E T '  e-'aD~~~)(E;1e-2i"D~E1) 
h 

E F  Y(z) = Yt(Z)Er 

E,F : Y(IZ - t i )  = yt(lz - tl)e-""D~~,e-'"D= 

~ c o  :Y (z) = ~ ( z  e*'") ezrDm . 
In order to define the continuous RH problem, we define sectionally analytic function @(z, t )  
as follows: 

- 

DC% 

(3.6) Y(Z) = @(Z)(i) Yo(z) = @o(z)zDO 

Ydz) = @r(z)(z - t ) D ' .  Y,(Z) = %(z)(z - 1 P  
The orientation used in figure 3 allows the splitting of the complex z-plane in + and - 
regions. Then, a*, Qi, i = 0,~ 1, t are the representations of the sectionally analytic 
function Q(z)  in the regions indicated in figure 3. Equation (3.5) implies certaii jumps for 
@(z) and we obtain the following RH problem: 

a+(?.) = @-(.?)V(?) on c @(z) = I + O  (i) - as z + o o  (3.7) 
__ 

where C = a + CO + E+ CI + DE + C, + E m  and the jump matrices are given by 

Figure 3. 
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The subscript + in  V, denotes that we consider the boundary value from the + region, 
i.e. ( z )+  = IzI e%'. 

By construction @ ( z )  satisfies the continuous RH problem and this can be checked by 
the product of the jump matrices V at the intersection points. The product conditions give 

The product conditions at the intersection points A ,  B ,  C, D and F are satisfied identically 
and the product condition at point E is satisfied because of the consistency condition (2.21) 
of the monodromy data. In equation (3.961, [VAS]+ indicates that z term in VAB must be 
evaluated as (z)+, in equation (3.9d). [ v C D ] +  indicates that (z - 1) term must be evaluated 
as (z - 1)+ and in equation (3.9f 1, (i) an2 (z - f )  terms in VEF must be evaluated as (i)+ 
and (z - f ) + ,  respectively. 

- - 
- 

The RH problem (3.7) is equivalent to following Fredholm integral equation 

(3.10) 

3.1. Derivation of the linear problem 

In this section, we will show that if the sectionally analytic function @ ( z )  satisfying the RH 
problem (3.7) is known, then the coefficients A and B of the Lax pair can be determined 
and hence the solution of PVI. 

We define A by A(z)  = %Y-'(z).  Since % and Y ( z )  admit the same jumps it follows 
that A(z )  is holomorphic in U7({0)+(l)+(t]) and has theremovable singularity at z = 00. 

Furthermore, Y ( z )  - (l/zIDffi as L + w, and thus A(z)  = A o ~  + A 1 5  +A,&.  Recall 
that, Y ( z )  and @ ( z )  are relatkd via (3.6), therefore (3.6) and = A ( z ) Y ( z )  give 

near z = w  - _  a@ OD,- 1 = b o -  1 + A l -  1 + A I - ] @  1 
az Z Z z - 1  , z - f  - 

near z = O  

+ A , - ] @  near z = 1  

Z 

- + @Dl - = b o : + A i -  az z - 1  2-1 2- - I  

1 +AI--]@ 1 

(3.11) z - f  
1 1 a@ 

near Z = Z .  
a@ 1 + A : - ] @  1 
-+@D,-= 
az z - t  z - 1  z - t  
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For large z ,  @ ( z )  has the expansion 

(z';) a s z + c o .  (3.12) 
1 @(z)  = I  + Q-1- + @-2- + 0 
Z Z2 

- 

Substituting (3.12) into (3.11~) yields 

0 - : Ao+ Ai + Ar = -D, 0 - ' -@-I + [D,, @-11 =~A1 + t A t  

(3113) 

Since, the function @(I) is sectionally analytic and @(z) = @i(z),  i = 0, 1, t about 
z = 0, 1, t ,  respectively, then (3.11b)dd) imply 

AO = Qo(O)Do@,'(O) A I  @ I ( I ) D I @ ; ' ( ~ )  At = %(f)~D,@;'(t)  (3.14) 

respectively. Thus, 

(3 ( z 3  

det Ai = 0 trace Ai = 0, i = 0, l .  f . (3.15) 

The equations (3.13) and (3.15) imply that Ai, i = 0 , l .  t can be taken in the form appearing 
in (1.3b), them (3.13b) gives 

(3.16) 

Similarly consideration implies that B is holomorphic in C/(t ]  and has removable 

(@-I)lz(i -e,) = u l w l  + ~ u , w ,  = -k ( t ) .  

Hence, the solution y ( t )  of PVI can be written in terms of ( @ - 1 ) 1 2 .  

1 singularity at z =~m. Thus B(z) = Bo,. Using = BY and (3.6) it follows that 

1 a@ 
at z - t  
a@ 1 1 -- -+&=Bo-@ near z = t  

Bo-@ near z = w  -= 

at z - t  z - t  

(3.17) 

These equations imply 

-= Bo ' Bo = -4r(t)Dt@F1(t)  (3.18) 

respectively. Equations (3.1%) imply that BO can be taken as BO = -Ar. Equation (3.18~) 
with (@- , )12  is consistent with the compatibility condition of (1.2b). 

at 

For certain choice of the parameters, PVI admit one parameter family of solutions which 
are expressible in term of hypergeometric function [16,3]. In this section, we will show 
that, for certain choice of the monodromy data such solution can naturally be obtained by 
finding the closed-form solution of  the RH problem (3.7). 

Let vo = 50 = 51 = 0, then the consistency condition (2.21) implies that 5; = 
0, 00 + 01 + 8, + ~1 = p ,  and KZ = q. p ,  q E Z. Without loss of generality, we let 
EO = I .  and !AI = V I  = !A, = gt  = 1, p = q = 0. Then the matrix valued RH problem 
can be reduced to set of scaler RH problems. If @(z) = (@(I)(z), Q(z)(z)) ,  then 

@&(?I = @;)(?)g(i) @&(i) - @&) = k(i)@;)(?) on c (4.1) 
where the jump functions g(?) and h(?) can be obtained from (3.8) for this particular 
choice. The RH~problem for @(1)(z) can easily be solved by introducing new sectionally 
analytic function Q(z)  such that @<l)(z)  = \ I r ( ~ ) z ~ + ~ - ( z  - 1)"(z - t)ef, @0(1)(z) = 
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Figure 4. 

Hence, the RH problem for @(z)(z): 
0$2) - @&?) = k(2)  on C(Z) = CI +m+ CI 

(4.4) 
4J(Z)(Z) -+ ( ;) as z 3 00 

where CO) is indicated in figure 4, and the jump functions k ( z )  are 

By Plemelj's formula the solution of the RH problem for @(z)(z) is given as 

(4.6) 

Evaluating the integals over the contours C1 and C, and using the consistency condition 
of the monodromy data, @m(z) is obtained as follows: 

where r(z) is given in (4.5). Combining (4 .3~)  with (4.7) and using (3.6~) yield 

Y(z) = 1 (4.8) 
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Expanding F ( z , t )  for large z the coefficient f ( t )  of the O(f)  term gives (see 
equation (I 5d) )  

u t )  =(em - ~ ( t )  (4.9) 
and expanding F ( z ,  t )  in powers of z the coefficient f o ( t )  of O(1) term gives 

uowo = @OfO(O . (4.10) 

Hence, the solution y ( t )  (1.5e) of PVI is 

where 

(4.11) 

(4.12) 

The functions f ( t )  and f o ( t )  can be put into the form of the integral representation of the 
hypergeometric function and its derivative with respect to its argument [20]. Therefore, for 
60 + 6'1 + 0, f 0, = 0 and for Re[&] < 1, Re[& J > -1, Re[&] =. -1 the solution of the 
PVI equation can be expressible rationally in terms of the hypergeometric function. 
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